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Suppression of interference in e-e scattering by the field of a 
strong electromagnetic wave 

M V Fedorov and S P Roshchupkin 

General Physics Institute, Academy of Sciences ofthe USSR, 38 Vavilov St, 117942 Moscow, 
USSR 

Received 4 January 1984 

Abstract. Electron-electron scattering in the presence of a strong electromagnetic field is 
investigated theoretically. The partial cross sections of multiphoton processes obtained 
are summed over the number of absorbed or emitted photons. The total cross section is 
shown to depend on the quantum nonlinearity parameter y = euE,/hw*. When y >> 1 the 
electromagnetic field suppressses interference of the direct and exchange channels of e-e 
scattering. 

Electron-electron scattering and its resonance features in the presence of an intense 
plane electromagnetic wave (EMW) have been investigated by Oleinik (1967), BO, et 
a1 (1979), Bergou et a1 (1981), Kazakov and Roshchupkin (1983). Here we shall dwell 
upon some non-resonant features of this process. In other words we shall consider 
the regions not too close to the poles of the amplitudes of scattering. 

As it will be shown below there is a rather pronounced difference between e-e 
scattering and scattering of electrons by some external static field in the presence of 
EMW (multiphoton stimulated bremsstrahlung, MSB). In the processes of MSB the main 
parameter of nonlinearity of partial multiphoton cross sections is equal to y = evE,/hw2 
where Eo and w are the EMW field strength amplitude and frequency, v is the field-free 
electron velocity (Bunkin and Fedorov 1965, Bunkin er a1 1972, Kroll and Watson 
1973, Karapetyan and Fedorov 1978). The parameter y contains the Planck constant 
h. in the denominator and hence it has an essentially quantum mechanical origin. 
However, when one sums all the partial cross sections of MSB to calculate the absorption 
coefficient of EMW a all the essentially quantum mechanical contributions cancel each 
other; the nonlinearity parameter of a does not depend on h. and is equal to v,/v, 
where vE = eE,/mw is the velocity amplitude of electron oscillations in EMW (Bunkin 
er al 1972, Karapetyan and Fedorov 1978). 

In contrast to MSB, in the case of e-e scattering in the presence of EMW, these 
essentially quantum mechanical parts of partial multiphoton cross sections do not 
cancel each other completely after summation over the number of absorbed or emitted 
photons. As a result the main nonlinearity parameter of the summed cross section 
coincides with y. When y - 1 the electromagnetic wave affects essentially interference 
of the direct and exchange channels of e-e scattering. 

Let the four-vector potential of EMW be given by 

A ( x )  = a , ( e ,  cos kx +6e ,  sin kx) 
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where U ,  = cEo/w, 6 is the ellipticity parameter, kx = w t  - kx, k = wn = w (  1, n ) ,  is the 
photon four-momentum, e ,  ,2 are the unit polarisation four-vectors 

e, = (0, e,), e:= -1, ejn = 0, j = 1 , 2 ;  e , e 2 = 0 .  

The process of e-e scattering will be studied here in the region of parameters 

77 = eEo/mwc<< 1, hw<c mc2, y b  1. (2) 

In the first Born approximation the process of e-e scattering in the field A ( x )  ( I )  
is determined by two diagrams described in figure 1 where the electron wavefunctions 

Figure 1. Diagrams of the direct ( a )  and exchange ( b )  channels of e-e scattering. In the 
presence of EMW the full lines correspond to the Volkov electron wavefunction. The 
broken lines correspond to the free virtual photon Green function. 

before and after scattering are the well known Volkov functions (see e.g. Berestetsky 
et al 1980). The Fourier expansion of all the periodical functions entering in the 
S-matrix can be used to present the amplitude of scattering as a sum of partial 
amplitudes S"' corresponding to absorption (if 1 < 0) or stimulated emission (if I >  0) 
of ) I (  photons from or to the wave A ( x ) .  

where 

Here cpo is some constant phase, f ( p  = 0, 1,2,3) are the Dirac matrices, uj(j = 
1, l', 2,2') are the Dirac bispinors, pj  = ( E ~ ,  p j )  ( j  = 1,2 and j = l ', 2') are the in- and 
out-going electron four-momentums. 

1, = 1 +p:+p: ,  r , = r - p :  (7) 

P: = P *( Pj .1 -  P * (  PI ), j = 1 , 2  (8) 

P * ( P )  = 4 ( 1  *s2)772m2/ (kP)  (9) 
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b2 is equal to b, (6) in which the index 1 is replaced everywhere by 2 and I - r is 
replaced by r. 

8, = tan-'( s tan cp,), 

d, = P, / (np, ) - P,/( np,), 

9, =&(e,,  41) 

j = l , 2  

(10) 

(11)  

a, = Sle,d,lA,, A, = ( 1  + a 2  tan2cp,)"2, 6 = e a l / w  

d,, is the projection of the vector d, ( 1  1 )  upon the polarisation plane (el ,  e2). 
In the centre of mass frame (CMF) 

p1,2= ( C l ,  *PI), PI ,2 = t P f * P f  (12) 

where E, and p, are the initial ( j  = i) and final ( j  = f )  relative energy and momentum 
of the electrons, Pf is the final momentum of C M F  as a whole. Let 8 be the CMF angle 
of scattering. Let for not too small 8 and l 8 - r (  

8 >> W l P I ,  le - TI >> w l p , ,  PI = /PI1 (13) 

the field strength E be restricted by the conditions 

These restrictions may be stronger than that given by inequality (2). Under the 
conditions (14) for any 8, I/3f,21 << 1 and hence I ,  = 1, r* = r and 

b, = e-i"-r"lJ,-r(al), b, = e-"'zJ,( a*). (15) 

Also the S'4'-function in equation (4) under the conditions (14) is reduced to 

a'4'(. . . ) = f a ( E f - E i + ; I a J ) S ( 3 ' ( P f + I k ) .  (16) 
Now the squared four-momentums of virtual photons in equation (5) are equal to 

for the first and second diagrams in figure 1 respectively. 

figure 1 become real, i.e. when 
The amplitudes S"'(4) have resonances when intermediate virtual photons in 

4: = 0, j = 1 , 2  (18) 

(Oleinik 1967, BO, e? ai 1979). 
Kazakov and Roshchupkin (1983) have shown that these resonances can occur 

only in the cases of forward and back scattering in the C M F  i.e. if 8 - o / p i  << 1 or 
18 - rI - w / p i  << 1 for the figures l ( a )  and ( b )  respectively. Hence the conditions (13) 
determine the non-resonance region where the amplitude S"'(4) have no poles. In the 
non-relativistic limit the non-resonance regions for S") with 1 # 0 include both large 
and small 8 and 18 - T I  because the non-relativistic amplitude S"' with I # 0 has no 
poles and no resonances at all (Bergou et a1 1981, Kazakov and Roshchupkin 1983). 

In the non-resonance region, equations (17) for 91 are very much simplified because 
one can ignore there all the terms proportional to w and w 2 .  Under these conditions 
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equation (5) for the matrix element M"' is reduced to the form 

where 
+cc 

CI = e i "S~-S~ ' J l_ , ( a , ) J~ (a2 )  =e"'lJf(x,) (20) 

e"l = ( l / x l ) [ a l  + a ,  ei(6~-62)], (21) 

, = -cc 

x, = [a :  +a: +2ai(u, cos(S1- &)I. 
The differential partial cross sections da" ' /dR are derived now in a routine way 

(Berestetzky et a1 1980) after summation and averaging over polarisation of scattered 
and incident electrons. The result can be written in the form 

where E = E ~ ,  p = lpi/, i,bo= 6, - 6 ,  + r, - f 2 ;  t2 and x2 are equal to t ,  and xi in which S I ,  
a,, a I  and a2 are replaced by a,, 6,, a ,  and a,; 6, and aJ (j = 1,2,3,4) are given by 
equations (10) with 

Let us consider at first the case of relativistic energies of electrons in the CMF. Then 
l l J u / u p ~ 4 m / p < <  1 and hence pI = 1 (23). Under this assumption the partial cross 
sections da'"/dR are easily summed over I to give 

da /dR  = 1 da"'/dR 
I 

where 
x = (x: + x: - 2x, x2 cos Go) ' I 2 .  

When Eo+ 0, x + 0, Jo(x) + 1 and equation (25) turns into the field-free Moller cross 
section of e-e scattering daM6,/dR.  In this limit the first, second and third terms in 
the brackets of equation ( 2 5 ) ,  correspond to the direct and exchange channels of 
scattering and to their interference. When Eo f 0, IJo(x)( < 1 and hence the effect of 
interference in e-e scattering is lowered due to the influence of EMW. A degree of 
influence of E M W  upon the cross section of scattering may be characterised by the 
parameter y determined by the equations 
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or explicitly 

Expression (26) for the argument x of the Bessel function in equations (25) and (28) 
is simplified in the case of a linearly polarised EMW 6 = 0: 

X l i n = I a I  +a,-a3--.+1 

where a, ( j  = 1,2,3,4) are given by equations (lo),  (24). 
In the ultrarelativistic limit 1 - U << 1 equations (27), (28) yield 

The conditions of applicability of equations (25), (28) are given by inequalities 
(2), (13) and E >> q2m2/w. 

The argument of the Bessel functions (26) in equations (25), (28), (29) is of the 
order of quantum parameter y calculated at U = c. When y<< 1(  77 << w/m) the EMW 

(1 )  only very weakly affects the process of e-e scattering (in this case y - y2<< 1 in 
accordance with the first-order perturbation theory term). When y b 1 ( r ]  b w /  m )  the 
influence of EMW on the process of e-e scattering becomes more essential because in 
this case 1 - J o ( x )  - J o ( x )  - 1 in equations (25), (28), (29). If at last y >> 1 the field of 
EM w almost completely suppresses interference of the direct and exchange channels 
in e-e scattering, the corresponding term in equation (25) being almost completely 
excluded: J o ( x )  =O.  The conditions y >> 1 and r] << 1 for w 3 x lo i5  s-' are satisfied if 
the electric field strength of the wave Eo is within the range 

(30) 104-105 V/cm<< E,<< 10io-lOi' V/cm. 

Under these conditions for example in the ultrarelativistic limit for 0 = $ 7 ~  equation 
(29) gives 

du,,/dCl= $(duM~l/dCl),, (31) 

i.e. under the influence of EMW the cross section du,,/dCl becomes almost twice less 
than the corresponding field-free cross section. 

Let us consider now the non-relativistic region of electron energies in the E M F  

U<< 1, supposing also that the frequency of the field w is not too large 

w << p2/ m (32) 

Now 6, = 6, and a,= 8' in equations ( lo) ,  (21) and the partial multiphoton cross 
sections (22) are given by 

where 

a 1 , 3 =  yleiyl,31hl,3, yi,3 = Pknf n 8  

(34) 
nj = uj / lu, l ( j  = i, f),  pf = [ I  - 4 h / m ~ ' ] ~ ' ' .  

These equations are applicable under the conditions (13) plus the condition of the 
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first Born approximation U >> CY = & plus the restriction 7’ << w /  mu. The latter restric- 
tion together with the assumption (32) restrict the parameter 7 by the inequality 7 << u ” ~  
which is stronger than the condition (2) (7<< 1).  Under assumption that the field 
parameter is even stronger restricted 7 << v the difference p, - 1 - ( I l w / m v 2 s  7/ u 
becomes small. In this case again the partial cross sections d d ” / d R  (33) can be 
summed to give 

This result can be derived also directly from equations (27), (28) in the non- 
relativistic limit U + 0. The conditions of applicability of equation (35) are given by 
inequalities (13) plus 

v2<< wlmv,  7 << U. (37) 

Equation (35) shows that again the field of E M W  diminishes the effect of interference 
in e-e scattering in the non-relativistic limit when y a  1. For example, when y >> 1, 
e = t r r  equation ( 3 5 )  gives 

da,,/dR = 2(daMol/dR),, (38) 

i.e. asymptotically for large y and e = $ r r  the non-relativistic cross section in the field 
of E M W  is twice as large as the field-free Moller cross section. A similar result has 
been derived numerically in the case of a very strong field 7 = 1 by Bos et al (1979). 

The condition y >> 1 is satisfied together with restrictions (37) e.g. for U - 10-2c, 
w - 3 x lo+” s-’, Eo-  107-10s V/cm. This field is only moderately strong and is obtain- 
able with the aid of modern lasers. 

As a rCsumC we would like to repeat and to emphasise our main qualitative 
conclusions. The cross section of e-e scattering in the field of EMW summed over the 
number of absorbed or emitted photons depends on the quantum nonlinearity para- 
meter y - evEo/hw2. When y 3 1 the field induced effect is a suppression of interference 
of the direct and exchange channels in e-e scattering. Due to the quantum mechanical 
nature of the nonlinearity parameter y this field induced effect can take place when 
the field strength of EMW is not too strong and in particular when the usual quantum- 
electrodynamical field parameter 7 is very small. All these features of e-e scattering 
make this process different from MSB in the case of electron scattering in an external 
field of ions, atoms, etc. In MSB, summation over the number of absorbed or emitted 
photons excludes all the essentially quantum mechanical peculiarities of scattering. 
The reason why MSB is so very different from e-e scattering is in the exchange between 
two electrons scattered by each other. This effect has no analogy in MSB. Exchange 
is an essentially quantum mechanical feature of the two-electron system. Probably 
this is the reason for which the cross section of e-e scattering summed over the number 
of absorbed or emitted photons conserves some essentially quantum mechanical 
features and, in particular, depends on the quantum mechanical nonlinearity 
parameter y. 
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